Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int. microbiol ; 26(4): 705-722, Nov. 2023. graf
Artigo em Inglês | IBECS | ID: ibc-227465

RESUMO

Introduction: At present, the presence of lead (Pb2+) continues to be a problem in water bodies due to its continuous use and high toxicity. The aim of this study was to investigate the bacterial diversity of a potential consortium used as a biosorbent for the removal of lead in an aqueous solution. Methods: The minimum inhibitory concentration and the mean lethal dose of the consortium were determined, and then the optimal variables of pH and temperature for the removal process were obtained. With the optimal conditions, the kinetic behavior was evaluated, and adjustments were made to different mathematical models. A Fourier transform infrared spectroscopy analysis was performed to determine the functional groups of the biomass participating in the removal process, and the diversity of the bacterial consortium was evaluated during Pb2+ removal by an Ion Torrent Personal Genome Machine System. Results: It was found that the intraparticle diffusion model was the one that described the adsorption kinetics showing a higher rate constant with a higher concentration of Pb2+, while the Langmuir model was that explained the isotherm at 35 °C, defining a maximum adsorption load for the consortium of 54 mg/g. In addition, it was found that Pb2+ modified the diversity and abundance of the bacterial consortium, detecting genera such as Pseudomonas, Enterobacter, Citrobacter, among others. Conclusions: Thus, it can be concluded that the bacterial consortium from mining soil was a biosorbent with the ability to tolerate high concentrations of Pb2+ exposure. The population dynamics during adsorption showed enrichment of Proteobacteria phyla, with a wide range of bacterial families and genera capable of resisting and removing Pb2+ in solution.(AU)


Assuntos
Humanos , Chumbo/toxicidade , Mineração , Microbiologia do Solo , Concentração Inibidora 50 , Biodiversidade , Toxicidade , Microbiologia , Técnicas Microbiológicas/métodos , Solo , Análise do Solo
2.
Int Microbiol ; 26(4): 705-722, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36527575

RESUMO

INTRODUCTION: At present, the presence of lead (Pb2+) continues to be a problem in water bodies due to its continuous use and high toxicity. The aim of this study was to investigate the bacterial diversity of a potential consortium used as a biosorbent for the removal of lead in an aqueous solution. METHODS: The minimum inhibitory concentration and the mean lethal dose of the consortium were determined, and then the optimal variables of pH and temperature for the removal process were obtained. With the optimal conditions, the kinetic behavior was evaluated, and adjustments were made to different mathematical models. A Fourier transform infrared spectroscopy analysis was performed to determine the functional groups of the biomass participating in the removal process, and the diversity of the bacterial consortium was evaluated during Pb2+ removal by an Ion Torrent Personal Genome Machine System. RESULTS: It was found that the intraparticle diffusion model was the one that described the adsorption kinetics showing a higher rate constant with a higher concentration of Pb2+, while the Langmuir model was that explained the isotherm at 35 °C, defining a maximum adsorption load for the consortium of 54 mg/g. In addition, it was found that Pb2+ modified the diversity and abundance of the bacterial consortium, detecting genera such as Pseudomonas, Enterobacter, Citrobacter, among others. CONCLUSIONS: Thus, it can be concluded that the bacterial consortium from mining soil was a biosorbent with the ability to tolerate high concentrations of Pb2+ exposure. The population dynamics during adsorption showed enrichment of Proteobacteria phyla, with a wide range of bacterial families and genera capable of resisting and removing Pb2+ in solution.


Assuntos
Solo , Poluentes Químicos da Água , Humanos , Chumbo/análise , Concentração de Íons de Hidrogênio , Temperatura , Adsorção , Cinética , Poluentes Químicos da Água/análise
3.
Antioxidants (Basel) ; 8(10)2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31581462

RESUMO

Resveratrol is an antioxidant abundant in red fruits, and one of the most powerful inhibiting reactive oxygen species (ROS) and oxidative stress (OS) produced by human metabolism. The effect of the spray drying processing conditions of blueberry juice (BJ) and maltodextrin (MX) mixtures was studied on content and retention of resveratrol. Quantitatively, analysis of variance (ANOVA) showed that concentration of MX was the main variable influencing content of resveratrol. Response surface plots (RSP) confirmed the application limits of maltodextrins based on their molecular weight, where low molecular weight MXs showed a better performance as carrying agents. After qualitatively comparing results for resveratrol against those reported for a larger antioxidant molecule (quercetin 3-D-galactoside), it was observed a higher influence of the number of active sites available for the chemical interactions, instead of stearic hindrance effects.

4.
Environ Monit Assess ; 191(2): 118, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30706145

RESUMO

The aim of this study was to know the biodiversity of total microorganisms contained in two polychlorinated biphenyl-contaminated aged soils and evaluate the strategies of bioaugmentation and biostimulation to biodegrade the biphenyls. Besides, the aerobic cultivable microorganisms were isolated and their capacity to biodegrade a commercial mixture of six congeners of biphenyls was evaluated. Biodiversity of contaminated soils was dominated by Actinobacteria (42.79%) and Firmicutes (42.32%) phyla, and others in smaller proportions such as Proteobacteria, Gemmatimonadetes, Chloroflexi, and Bacteroidetes. At the genus level, the majority of the population did not exceed 7% of relative abundance, including Bacillus, Achromobacter, Clostridium, and Pontibacter. Furthermore, four autochthonous bacterial cultures were possible isolates from the soils, which were identified by partial sequencing of the 16S rRNA gene, as Bacillus sp., Achromobacter sp., Pseudomonas stutzeri, and Bacillus subtilis, which were used for the bioaugmentation process. The bioaugmentation and biostimulation strategies achieved a biodegradation of about 60% of both soils after 8 weeks of the process; also, the four isolates were used as mixed culture to biodegrade a commercial mix of six polychlorinated biphenyl congeners; after 4 weeks of incubation, the concentration decreased from 0.5 mg/L to 0.23 mg/L.


Assuntos
Bactérias/isolamento & purificação , Monitoramento Ambiental/métodos , Bifenilos Policlorados/análise , Microbiologia do Solo , Poluentes do Solo/análise , Bactérias/classificação , Biodegradação Ambiental , Biodiversidade , México , Bifenilos Policlorados/metabolismo , Pseudomonas/isolamento & purificação , Solo/química , Poluentes do Solo/metabolismo
5.
Microb Ecol ; 72(1): 70-84, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26944561

RESUMO

Greater Mexico City is one of the largest urban centers in the world, with an estimated population by 2010 of more than 20 million inhabitants. In urban areas like this, biological material is present at all atmospheric levels including live bacteria. We sampled the low atmosphere in several surveys at different points by the gravity method on LB and blood agar media during winter, spring, summer, and autumn seasons in the years 2008, 2010, 2011, and 2012. The colonial phenotype on blood agar showed α, ß, and γ hemolytic activities among the live collected bacteria. Genomic DNA was extracted and convenient V3 hypervariable region libraries of 16S rDNA gene were high-throughput sequenced. From the data analysis, Firmicutes, Proteobacteria, and Actinobacteria were the more abundant phyla in all surveys, while the genera from the family Enterobacteriaceae, in addition to Bacillus spp., Pseudomonas spp., Acinetobacter spp., Erwinia spp., Gluconacetobacter spp., Proteus spp., Exiguobacterium spp., and Staphylococcus spp. were also abundant. From this study, we conclude that it is possible to detect live airborne nonspore-forming bacteria in the low atmosphere of GMC, associated to the microbial cloud of its inhabitants.


Assuntos
Microbiologia do Ar , Bactérias/classificação , Biodiversidade , Filogenia , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Bacillus/genética , Bacillus/isolamento & purificação , Bactérias/isolamento & purificação , Cidades , Meios de Cultura , DNA Bacteriano/genética , Genômica , Gluconacetobacter/genética , Gluconacetobacter/isolamento & purificação , México , Proteobactérias/genética , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...